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Optimum Quarter-Wave Transformers*

LEO YOUNG~, SENIOR MEMBER, IRE

Summary—The design of uniformly dispersive quarter-wave
transformers is a well explored subject. Common examples are
rectangular waveguide E-plane transformers, in which the a dimen-
sion is kept constant.

In this paper, it is shown that the performance of conventional

quarter-wave transformers of a single section can always be im-
proved by making the middle section less dkpersive than the input

and output waveguides, and a formula for the optimum a dimension
is given.

The theory was verified experimentally. In this instance, the im-

proved transformer measured 50 per cent more bandwidth than did

the conventional one, and was 25 per cent shorter besides.

INTItODLTCTION

I
N the design of quarter-wave transformers, it has

hitherto always been assumed that the guide wave-

length is independent of position along the line.

This is so, for instance, for TEi\f modes, or for TEO.

modes in rectangular waveguide where the wide or a

dimension is kept constant. Such transformers, having

guide wavelength independent of position, are called

homogeneous transformers. 1 When the guide wavelength

varies along the length of the transformer, it is called

inhomogeneous, The first exact design formulas for ideal

homogeneous quarter-wave transformers were given by

Collin,3 who considered up to four sections. The first

complete synthesis procedure was given by Riblet.4 The

author later computed extensive numerical tables,5

which have been checked out experimentally on nunler-

ous occasions.

This paper is concerned only with single-section

quarter-wave transformers. In particular, it will be

shown that the performance of the conventional homo-

geneous waveguide transformer of a single section can

always be improved by making the transformer section

* Received by the PGMT’T, March 2, 1960; revised manuscript
received,, April 28, 1960. This paper is based on part of a Dr. Engrg.
dissertat]ou, Johns Hopkins University, Baltimore, Md.

t Stanford Res. Inst., Menlo Park, Calif. Formerly with Elec-
tronics Div., \Vestinghouse Electric Corp., Baltimore, Md.

‘ L. Young, “Concerning Riblet’s theorems, ” IRE TRANS. ON
MICROWAVE TH~OR~ AND TECHNIQUES, vol. MTT-7, pp. 477-478;
October, 1959.

z The junction of the two transmission lines when j unstion dis-
continuities are neglected is called an “ideal transformer. ” (This is
analogous to two perfectlv-coupled coils of turns ratio (ZJZI)l[Z and
havil;g infinite inductance.) “

s R. F.. Collin, “Theory and design of wide-band multisectiou
quarter-wave transformers, ” pT<OC. IRE, vol. 43, pp. 179–185 ;
February, 1955.

‘ H. J. Riblet, “General synthesis of quarter-wave impedance
transformers, ” IRE ‘hANS. ox MICROWAVE THEORY AND TECH-
NIQUES, vol. 5, pp. 36–43; January, 1957.

5 L.. YoulIg, “Tables for cascaded homogeneous quarter-wave
transformers,” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-7, pp. 233–237; A~ril, 1959.

September

less dispersive than the input and output waveguides,

and that an optimum inhomogeneous transformer exists

in general. Transformers with two or more sectionse are

not considered in this paper.

THE INSERTION Loss FLNCTION, PL

Consider a single-section rectangular waveguicfe

transformer operating in the TEO1 mode. Let a denote

the wide dimension, and b the height, of waveguide.

The input guide has dimensions aa X ba, the output

guide a%X bz, and the quarter-wave section al X bl, as

shown in Fig. 1.

The transformer is shown schematically in Fig. 2.

The characteristic impedances are 2., 2, and

reflection and transmission coefficients 7 at

transformer steps, are rl, J7Z and TL, Tz given

21 – Z(1 ~o=z2–zl
rl=——

zL+~iJ “ z, + zL

and

2,. The

the two

by

(1)

2(zlz”)L/~ 2(z2zJ1/~
TI == ~-—z: t T, = (2)

Zz + ZL

The over-all transfer or wave ]natrix”,7 of the trans-

former can then be written

where O is the electrical length of the transformer sec-

tion at any frequency. If we write T= (T, J), i, j = 1, 2,

the insertion loss function Pz is

PL = I Till’

which after manipulation reduces to

(4)

PL=l+ #T~ [(r2 – rl)’ + ~rLr2 COS2 d]. (5)
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Fig. 2—Quarter-wave transformer parameters.

For a quarter-wave transformer, a match is required

at8=7r/2, so

(6)

SOME FORMULAS FOR WAVEGUIDIIS

Denote the free space (or medium) wavelength by k

and define the differential operator

(7)

where C is any constant. Define the dimensionless ratios

(8)

(9)

h
~=— (10)

A.

where ~g is the guide wavelength and h. is the cutoff

wavele n&h of the waveguide, for the mode of propaga-

tion.

Since

(11)

then

tz–sz=l. (12)

Also

Ut = s. (13)

Their derivatives are

Dt = s’t (14)

Ds = st’ (15)

Du = U. (16)

The derivative of the electrical length 0 is given by

DO = – tl’o. (17)

For TE modes,

(18)

and remembering that a and b are constants for the

differential operator D =l(d/dh), itcan be showne that

ml = *(1 – r12)(t1Z – to2)

mz = *(1 – r2’)(t2’ – h’). (19)

THE OPTIMUM TRANSFORMER

For a quarter-wave single-section transformer, (6) en-

sures a perfect match at one frequency, the “center

frequency. ” This equation does not, however, com-

pletely determine the transformer if dispersive, since

the rates of change of rl, 172 and O may st:ill be adjusted

by one remaining parameter, the cutoff wavelength of

the intermediate section. For optimum performance set

D2PL=0 at O=:. (20)

From (5), this becomes

D(r2 – r,)’ + 4rym)’ = o (21)

where use has been lmade of (6) after (differentiation.

Referring to (17) and (19) one finally obtains

2 2-

‘12=+[ 1 +@x] ’22)

as the required condition, where 171= I“’= 17 by (6).

This can also be expressed

Ago2i- Ag22
~g,2 = !_

‘1 () 1“

(23)
2 (z’ — 20)’

1+ ;
2220
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(equal only if T = O) ; and if furthermore aO =aa, then

al optimum > aO = a2 (25)

in all cases, i.e., in this case the matching section should

always be less dispersive than the input and output

waveguides (as might have been expected). Thus, a

homogeneous transformer is never an optimum trans-

former (except in the trivial case 17= O). A flatter fre-

quency response can be obtained, at least for small

bandwidths, by making the transformer inhomoge-

neous.

In general, if r is large enough, or to andtz small enough,

or both, (22) may yield a value for tl less than unity,

and a true optimum transformer then does not exist. In

that case, tl = 1 gives the best transformer.

NUMERICAL RESULTS

To test the theory and to assess the sharpness of the

optimum, we analyzed numerically several transformers.

In all cases, the optimum transformer was correctly

predicted by (22).

The numerical work shows that the improvement ob-

tained in going from a homogeneous to an inhomo-

geneous transformer of one section is significant only

for fairly large transformer ratios and more-than-

average dispersive lines. One such example is repro-

duced below.

It is required to transform from 0.900 inch xO.050

inch to 0.900 inch X 0.400 inch waveguide at a design

wavelength of A. = 1.638 inches. The intermediate section

dimensions will be denoted by al Xbl. The VSWR

against wavelength response of the homogeneous

(al = 0.900 inch) and optimum (al= 1.90 inches) trans-

formers are plotted in Fig. 3. The slope at the center of

the optimum transformer curve is less than half (about

45 per cent) of the corresponding slope for the honlo-

geneous transformer. Again, further computations show

that the response curve changes slowly near the opti-

mum, and most of the improvement occurs as one pulls

away from the homogeneous case. Thus, more than half

the improvement is realized in changing al from 0.900

to 0.990 inch, an increase in width of only ten per

cent. This response is also plotted in Fig. 3. Eq. (22) has

also been verified numerically where the input and

output waveguide wide dimensions (“a-dimensions”)

are different, and therefore a homogeneous transformer

is not possible at all.

PRACTICAL CONSIDERATIONS FOR COAXIAL LINE AND

TEOI MODE RECTANGULAR WAVEGUIDE

TR.4NSFORMERS

All exact synthesis procedures assume the existence

of ideal transformers. These produce only a change in

characteristic impedance, which occurs in the plane of

the transformer.

The departure from ideal conditions can be explained

in more than one way. Thus, any obstacle can be repre-

sented as a transformer at one frequency by choosing

18

11

16

Is
~
:

14

13

12

II

I,0
92 93 94 95 96 97 .98 99 I 00 I 01 I 02 I03 104 I05 108 I07

MAO

Fig. 3—VSWR against wavelength of homogeneous and optimum
inhomogeneous transformers, as well as one intermediate trans-
former.

reference planes with real I’. However, as the fre-

quency changes,

1)

2)

3)

the magnitude of the junction VSWR changes

differently from the impedance ratio of the two

waveguides,

the left reference plane moves,

the right reference plane moves.

Thus, the frequency behavior of three parameters must

be given to describe completely a lossless two-port.

Coaxial Line and Waveguide E-Plane Steps

Coaxial line junctions and rectangular waveguides

with E-plane steps can be represented by an ideal trans-

former plus a shunt susceptance at the discontinuity.~,9

Formulas and graphs are given by Marcuvitz.l” For this

type of junction, the transformer ratio is also independ-

ent of frequency, and equal to the impedance ratio.

The susceptance value is positive, i.e. capacitive, but its

frequency dependence is different from that of a capac-

it y. Since the discontinuity susceptance is usually small,

its effect on the amplitude of the (real) reflection coef-

ficient is second-order, and the only first-order mani-

festation is a phase-shift through the transformer. It

can, therefore, be compensated quite accurately by

changes in length, usually a decrease from the quarter-

wave spacings between the steps.11

Wavegz~ide H-Plane Steps

When a change in the wide or a dimension occurs in

rectangular waveguide propagating in the TEO1 mode,

the discontinuity may be represented8,g by an ideal

transformer modified by a shunt susceptance which is

negative (inductive). However, this alone is not suf-

8 N. Marcuvitz, ‘[Waveguide Handbook, ” M.I.T. Rad. Lab. Ser.,
hfcGraw-Hill Book Co., Inc., New York, N. Y., vol. 10; 1951.

g L. Lewin, “Advanced Theory of Waveguides, ” Iliffe and Sons,
Ltd., London, Eng.; 1951.

10Marc~vitz, oP. G&, PP. 307–312.
11S. B. Cohn, “Optimum design of stepped transmission-line

transformers, ” IRE ‘rRANS. OATMICROWAVE THEORY AHD TECH-
~IQUES, vol. MTT-3, pp. 16–21; April, 1955.
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ficient. Unlike for the E-plane step, the maximum

number of three parameters must be specified. In

Marcuvitz,12 the three parameters chosen and graphed

are

1)

2)

3)

a shunt inductance;

the transformer impedance ratio;

the position of one reference plane; the position of

the other reference plane is defined to be in the

plane of the junction.

The transformer impedance ratio of an H[-plane step

is no longer simply the ratio of the characteristic im-

pedances of the two waveguides, as is the case for E-

plane steps, but is greater, Thus, even after the induct-

ances are compensated for by a change in the spacings

(as for the capacitances at E-plane steps), there remains

an increase in the transformer ratio of the H-plane

step over and above the impedance ratio of the two

waveguides. .

‘The practical effects on the design of H-plane trans-

formers are usually as follows:

1)

2)

3)

The effect of the shunt inductance can be cor-

rected for by Cohn’s method .11

The increase in transformer ratios has the effect of

increasing the effective value of the output-to-

input impedance ratio R. The effective R is the

product of all the transformer ratios. fine also has

to compensate the individual section characteristic

impedances, which can be done by simply adjust-

ing the waveguide heights.

The distance of the reference plane from the junc-

tion increases from zero approximate el y as the

square of (al —az), where al and az are the two

guide widths (“a-dimensions”). This distance can

become considerably larger than a quarter-wave

lelgth for H-plane steps in excess of 10 or 20 per

cent of the guide-widths. In practice, :L first-order

correction might therefore be expected to hold

only for steps smaller than this. In general, as

cutoff is approached, the ratio (h~/a) becomes

large, and the correction will become a smaller

fri~ction of ~ },, and so proportionately larger steps

might then be corrected for.

Compound Steps in ~7aveguz’de

For compound steps in both the E-plane and the H-

plane simultaneously (changes in both a and b dimen-

sions al: one junction of two guides), no formulas or

numerical information are available. If the necessary

corrections are small enough, it should be possible to

treat the E-plane capacity correction, and the two H-

plane corrections for inductance and reference plane

position, separately. Then add the three corrections to

each section length as if they were independent.

Finally, symmetrical steps generally require less com-

pensation than asymmetrical steps, and are for this

reason to be preferred.

12~lal-CUl-itz, Op. Git., pp. 292–304.

EXPERIMENT.IL VERIFICATICIIN

TWO of” the transformers described in the numerical

example, the homogeneous (conventional) transformer

with al= 0.900 inch and the inhornogeneous (improved)

transformer with al= 0.990 inch, were built and tested.

(The optimum transformer, with al= 1.90 inches would

have introduced higher-order modes, besides perfornling

theoretically little better than the transformer with

al= 0.990 inch, and wa,s therefore not constructed.

Compare Fig. 3.) The free space wavelength of 1.638

inches corresponds to a frequency of 7211 mc per second.

The output waveguide size of 0.900 inch xO.400 inch is

Retina waveguide type No. WR90 and could con-

veniently be connected directly to a standard X-band

slotted line. For the output waveguide of cross section

0.900 inch xO.050 inch, a special sliding load was con-

structed which had a VSWR of better than 1.02 over

most of the frequency band covered in the tests. The

inside dimensions of the two transformers, including the

intermediate sections after correction for the junction

susceptances and reference plane positions8’1[) are sh,>wn

in Fig. 4. All steps were symmetrical.

The VSWR against wavelength response of these two

transformers (Fig. 4), treated as ideal transformers,

corresponds to the upper two curves in Fig-. 3. The

inhornogeneous response curve (middle curve in Fig. 3)

has to be modified to allow for the junctions not being

ideal, which increases the effective transformer ratio, R,

of the inhomogeneous transformer by some factor. This

factor is determined from a figure in hlarcuvitz’ work,l~

for the symmetrical step, and in this case turns out to

be about 1.095 per step; hence, the effective R equals

(1.095)2= 1.20 times 8, or 9.6.

Thus, after making the appropriate 1ength correc-

tions, the electrical performance of this transformer

[Fig. 4(b) ] should correspond to the following ideal

transformer:

Input waveguide: 0.900 inch X 0.0!50 inch

lb’fiddle section: 0.990 inch XO.231 inch

output waveguide: 0.900 inch xO.480 inch

at a frequency of 7211 Mc.

The 17SWR against wavelength response of this ideal

transformer is shown as curve (c) in Fig. 5. This, there-

fore, becomes the expected performance of the im-

proved transformer [Fig. 4(b) ], whose ideal response

corresponds to the middle curve in Fig. 3, or curve (b)

in Fig. 5. Finally, curve (a) in Fig. 5 is both the ideal

and the expected performance of the howzogew’ous

transformer [Fig. 4(a) ].

The measured p,oints for the two transformers shown

in Fig. 4 are plotted in Fig. 6, together with their ex-

pected (computed) curves. It is seen that the exl)eri-

mental points for both the conventional (hornogene(ous)

and improved (inhomogeneous) transformers lie c[ose

13 Marcuvitz, lJp. d., p. 299, Fig. 5.24-2.
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(a)

Fig. 4—One-section transformers: (a) control transformer (homoge-
neous); (b) improved transformer (inhomogeneous).
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to the computed curves, and bear out the theory to

within experimental accuracy. (The spread in the meas-

ured points is thought to be due mainly to the presence

of harmonic frequencies from the signal generator.)

CONCLUSION

We conclude, therefore, that the ideal transformer

theory applies to inhomogeneous as well as homo-
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Fig. 6—Experimental points and theoretical curves for
the two transformers tested.

geneous transformers in rectangular waveguide after

computable corrections
8,10 have been applied. In par-

ticular, a single-section inhomogeneous transformer is

capable of bettering the performance of the homo-

geneous one, and this improvement is obtained with a

shorter transformer.

It is interesting to note that Sol ymar” and Riblet’b

l?aT, e recently compared quarter-wave transformers to

other impedance transformers and demonstrated their

~uperiority under certain conditions. Both, however,

considered ord y conventional transformers, which (for

di~persive waveguides) can further be improved, as

demonstrated in this paper.

ACKNOIVLEDGMENT

The author owes much to the teaching and ‘en-

couragement of Dr. W. H. Huggins of the Johns Hop-

kins University. The help of Dr. Ferdinand Ham-

burger, Jr. and Dr. C. F. Miller, also of the Johns Hop-

kins IJniversity, is gratefully acknowledged.

W. M. Etchison and A. C. Robertson helped with

most of the computations.

This work was made possible by the financial support

of the Westinghouse Electric Corporation’s B. G.

Lamme Graduate Scholarship for 1958-1959.

14L. Solymar, “Some notes on the optimum design of stepped
transmission-line transformers, ” IRE TRANS. ON MICROWAVE THEORY
AND TECHNIQUES, vol. MTT-6, pp. 374–378; October, 1958.

‘s H. J. Riblet, “A general theorem on an optimum stepped im-
pedance transformer, ” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-8, pp. 169-170; March, 1960.


